2025年4月29日 星期二

專利適格性在促進AI創新的角色 - 筆記2

本篇為繼前篇的第2篇:
專利適格性在促進AI創新的角色 - 筆記1(https://enpan.blogspot.com/2025/04/ai-1.html

內容參考「The Role of Patent (In)Eligibility in Promoting Artificial Intelligence Innovation」,本篇參考此文內容的脈絡,並加上自己的筆記與心得。

AI驅動的發明顯然是以電腦為工具實現的發明,文中認為,即便是專家,欠缺AI準確的定義,但有一般定義,也就是通過機器模擬人類行為的電腦程序,通過演算法,可以像人類一般具有學習、解決問題、達成目標的能力。

定義AI:
文中提到美國國會頒布的「國家人工智慧倡議法案(National Artificial Intelligence Initiative Act of 2020)」(https://www.congress.gov/bill/116th-congress/house-bill/6216/text)定義了AI:"a machine-based system that can, for a given set of human-defined objectives, make predictions, recommendations or decisions influencing real or virtual environments."(機器運作的系統針對人類定義的目標進行預測、建議或是影響真實或虛擬環境的決定。)

準確地說:
(3) ARTIFICIAL INTELLIGENCE.—The term “artificial intelligence” means a machine-based system that can, for a given set of human-defined objectives, make predictions, recommendations or decisions influencing real or virtual environments. 
Artificial intelligence systems use machine and human-based inputs to— 
(A) perceive real and virtual environments; 
(B) abstract such perceptions into models through analysis in an automated manner; and 
(C) use model inference to formulate options for information or action.
(AI系統使用機器與人類輸入以感知真實與虛擬環境、通過自動化分析以抽象化感知為模型,以及使用模型推理以公式化資訊或動作。)


要考量AI發明的專利適格性,就要定義何謂AI發明?

AI Invention:
USPTO審查委員分組中有個“AI發明的Art Unit”,過去在分案時,專利說明書中有AI的內容超過42%時,申請案就會分到這個“Art Unit";但現在USPTO定義AI發明為包括以下8類技術的一或多個:(1) planning/control(計劃/控制); (2) knowledge processing(知識處理); (3) speech(語音); (4) AI hardware(AI硬體); (5) evolutionary computation(演進運算); (6) natural language processing(自然語言處理); (7) machine learning(機器學習); and (8) vision(視覺).

AI系統:(updated on May 2, 2025)
(1.) Any artificial system that performs tasks under varying and unpredictable circumstances without significant human oversight, or that can learn from experience and improve performance when exposed to data sets.
(2.) An artificial system developed in computer software, physical hardware, or other context that solves tasks requiring human-like perception, cognition, planning, learning, communication, or physical action.
(3.) An artificial system designed to think or act like a human, including cognitive architectures and neural networks.
(4.) A set of techniques, including machine learning, that is designed to approximate a cognitive task.
(5.) An artificial system designed to act rationally, including an intelligent software agent or embodied robot that achieves goals using perception, planning, reasoning, learning, communicating, decision making, and acting.

考量AI發明的專利適格性,將AI技術分為三個層次:
(1) data layer(資料層),這是關於用於訓練AI的訓練資料(training data)、測試資料(testing data)與驗證資料(validation data),經完成訓練後建立AI模型,AI模型最後根據輸入資料產生預測結果等的輸出資料。(2) application layer(應用層)(i.e., software),這是關於電腦軟體,通過軟體驅動AI系統執行相應的動作、作決定以及產生結果。舉例來說,深度學習模型讓AI搜尋抽象的數據,AI神經網路則是倚賴數學模型執行分析。(3) system layer(系統層)(i.e., hardware),這是關於AI系統的硬體,即電腦硬體。

其中(1)資料層(structure, organization, storage, manipulation, and presentation of AI data)的專利適格性判斷是當中最簡單的,數據本身是不屬於35U.S.C.101中規定可專利的四個類別,數據本身是不可專利,然而,AI系統的運作是倚賴數據,關於數據的處理涉及方法,如資料搜集、組織、儲存、操作或表示等技術,是有可能具有專利適格性。

(2)應用層(computational methods and software operation relating to AI)的專利適格性判斷關注在電腦科技的改善,特別是通過軟體運作的電腦功能,軟體在AI系統中模擬人類行為,不過這樣就是抽象概念,因此在描述相關軟體時,要描述如何執行其中動作,而非僅是描述功能

在(3)系統層(AI-specific hardware and general-purpose technology adapted for use in AI inventions)中,較為具體的是AI系統的機構與電路等硬體元件,然而,卻要避免僅採用已了解(well-understood)、常規(routine)與習知(conventional)的硬體元件,涉及的TWO-STEP中的step two,申請專利範圍中須具有進步概念(inventive concept)而能超越抽象概念。

2024 Guidance Update on Patent Subject Matter Eligibility, Including on Artificial Intelligence

針對方法流程的精簡流程:

如此,將AI系統拆解為上述數據、軟體與硬體的討論,每層在AI發明中有各自重要的功能,使得AI發明在專利適格性的議題中更為明確,更清楚於適格性答辯中使用。

Ron

沒有留言: