- 輸入數據與輸出數據之間的相互關聯不是該領域的技術常識;
(整個AI流程中輸入數據與預期輸出的結果之間有創新的關聯性) - 是獨特的學習方法;
(AI流程中的機器學習過程具有新穎特徵) - 有必要對適用領域進行限定。
(AI有特定應用,如解決獨特的問題)
根據前篇提到「河野特許事務所」的網頁資料(http://knpt.com/contents/ai/2019.09.10.pdf),提到了一篇經典的AI專利:
範例一:US9,406,017
圖1示出了具有多層的神經網絡102,每層具有一個或多個特徵檢測器(feature detector),每個特徵檢測器與輸入參數的激勵函數(activation function)與權重相關聯。
記憶體106儲存每個特徵檢測器的內容,包括訓練數據,數據例如「圖像分類」,特別是已知分類的圖像。在訓練階段,神經網路學習每個特徵檢測器的最佳權重,通過開關108操作特徵檢測器,在神經網路的訓練過程中,為了防止過度擬合(over-fitting),特徵檢測器(神經元)可被丟棄(無效),執行訓練權重歸一化處理,在特徵檢測器中,權重乘以未被無效的特徵檢測器的概率。
專利範圍界定了「電腦實現的方法」,這是涉及AI本身的專利,而非應用,具有上述幾個可專利要點之一:獨特的學習方法。
1. A computer-implemented method comprising:
obtaining a plurality of training cases; and
training a neural network having a plurality of layers on the plurality of training cases, each of the layers including one or more feature detectors, each of the feature detectors having a corresponding set of weights, and a subset of the feature detectors being associated with respective probabilities of being disabled during processing of each of the training cases, wherein training the neural network on the plurality of training cases comprises, for each of the training cases respectively:
determining one or more feature detectors to disable during processing of the training case, comprising determining whether to disable each of the feature detectors in the subset based on the respective probability associated with the feature detector,
disabling the one or more feature detectors in accordance with the determining, and
processing the training case using the neural network with the one or more feature detectors disabled to generate a predicted output for the training case.
範例二:TWI617933
專利範圍界定一個用以改良微影程序的電腦實施方法,算是上述要點之一:對適用領域進行限定,其中特徵有拍攝設計佈局,取得目標特徵,通過攪動目標特徵產生訓練範例,用以訓練一學習模型,用以分類目標特徵。
範例三:TWI649659
專利範圍第1項界定一個「自動光學檢測影像分類方法」,是一個典型的AI應用專利,也是上述要點之一:獨特的學習方法與限定適用領域,步驟包括將自動光學檢測設備的樣本輸入AI模組,進行離散輸出,得到樣本分類資訊,運算後,對樣本相似性進行權重分析,判斷分類結果,再進行分類。
USPTO的AI資訊:
https://www.uspto.gov/about-us/events/artificial-intelligence-intellectual-property-policy-considerations
Ron
沒有留言:
張貼留言